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Abstract

- This paper describes a model for survival functions called the cumulative

damage threshold crossing model. Under this model, an item, consisting of

a large nmber of components which suffer damage at regular moments of time,

fails as soon as the maximum cumulative damage to some component crosses a

certain threshold. Under various conditions on the damage distribution, two

plausiblenew survival distributions)

Sl(t) - exp{-exp(a+Ot-Yt-)}, t > 0, -- o , > 0 and y > 0,

and

S2 (t) = exp{-Ot(1/t-y)'a, 0 < t < l/y, a > -1, 6 > 0 and y > 0

arise. -he survival function S is shown to fit several data sets in the

area of cancer studies, failure times of insulating fluids and failure times

of air conditioning units.



I. Introduction.

The achievements of Reliability Theory depend largely on successful

modelling of survival functions of lifetimes. The famous 'shock model' of

Esary, Marshall and Proschan (1973) can be described as follows. An item

is buffeted by shocks which arise according to a Poisson process. Each shock

causes a random damage and the damages accumulate. The item fails as soon as

the cumulated damage exceeds a certain threshold. Further generalizations ....

of this model have appeared in the literature, e.g. A-Hameed and Proschan

(1973, 1975). Only qualitative properties of survival functions under this

model were studied in these papers. The survival functions were not fitted

to actual data.

The classical results of Gnedenko (1943) on the three types of asymptotic

distributions for an extreme observation lend themselves naturally to the

modelling of survival functions. That is why in many applications, survival

functions are assumed to be Weibull
.1

(1.1) S4 (t) a exp(-(uc)o), t > 0, a • 0 > 0,

or to be the shifted Weibull

(1.2) S3(t) - exp{-[a(t-y)]}, t > y, a > 0, B : 0, - < ( <.

There are many variations to the use of Gnedenko's (1943) results in

modelling survival distributions. One can introduce dependence among the

observations, one can have spare parts which instantaneously replace parts

that fail and thus increase system life, etc. A partial list of references

that contain such extensions is, Ashar (1960), Birnbaum, Esary and Saunders

(1961), Davis (19S2), Flehinger (1962), Harris (1970), Laurent (1958),

Schafer and Finkelstein (1962), Sen, Bhattacharyya and Suh (1973) and Weiss

(1961).
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In this paper we suggest a different model which can be described in

broad terms as follows. An item consists of a large number of components.

At regular moments of time, t a 1, 2, ... , random damages occur to the com-

ponents and the damages accumulate. The item fails as soon as the cumulative

damage to some component crosses a certain threshold. -

It is easy to produce examples where such a model would apply. In cancer

studies one may define the onset of cancer as the time at which one of the

cells becomes mutant. Thus one may postulate that an organism consists of a

large number of cells, that the environment produces random malevolent effects

on the cells and that a cell becomes mutant when the cumulative malevolent

effect exceeds a certain threshold. Similar models can be postulated in other

situations like machines with a large number of parts, electronic equipment

with large numbers of transistors, diodes, etc.

For the simplest form of our model, we present some asymptotic results

in Section 2. This leads to two new survival functions

(1.3) SI(t) = exp(-exp( a.8t -yt )}, t > 0, < a < , > • 0, y > 0

and

(1.4) S2 (t) = exp(-Bt(l/t-y)'a}, 0 c t < 1/y, a > -1, 0 > 0, y > 0.

The proofs of these results employ results on rates of convergence for moderate

and large deviations.

In Section 3 we fit our survival functions S1(-) and S2(') as well as _

the classical ones S3 (.) and S4(.) to a variety of data. The data come from

cancer studies in England and Wales, Doll (1971), from studies on insulating

fluids, W. Nelson (1972, 1975), and from air conditioning systems on Boeing _

aircraft, Proschan (1963). It is gratifying to see that the new survival

function SI(e) fits nearly all these data better than the others.
9
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The survival functions S 1 (-), S2 (.) and S3(.) each contain three parameters

a, B and y while $4(-) contains only two parameters a and B. The survival

functions S $5(.) and $4 (.) may have either an increasing failure rate

(IFR) or a decreasing failure rate (DFR). For example, S is IPR if a k 0

and S3 (,) and S4 () are each [FR if B a 1. On the other hand, S,(.) is a

more flexible survival function. Sl(.) may, depending upon the values of

its parameters, be an IFR survival distribution or it may have an increasing

failure rate for small and large values of t while having a decreasing failure

rate for moderate values of t.

2. The survival functions SI(-) and 32(a).

Consider an item that consists of k components. The i component suffers
t

damage Zit at time t w 1, 2, . Let S it a = Zij be the cumulative damage

to component i at time t, i = 1, ... , k, and let Skt a max Sit be the maximumlsiak

cumulative damage suffered by any component. The cumulative damage threshold

crossing model that we propose in this paper postulates that the life of the

item is given by

(2.1) L inf{t: St> d),

where d is the threshold.

We make the following simplifying assumption. The random damages

ZIII Z12  ... Z21, Z22# ...  "p I Zk2 , ... are independent and identically

distributed with common distribution function F(-). One could relax this by

assuming that the vectors (Zl, ...,Zkl), (Z12,...,Zk2 ), ... are independent

and identically distributed or follow a special stochastic process. One could

also define the life of the item by

L a inf(t: #(Slt,...,Skt) Xd)



-4-

where (.,.....) is a function of the individual damages representing the

damage to the item. We propose to examine these generalizations in a future

paper.

Reverting our attention to the simple model, we obtain the asymptotic

distribution of Skt as t - - and k a k(t) + - at a certain rate in Theorems I

and 2. In Theorem 1 we assume, among other conditions, that F(-) has a finite

variance and obtain a double exponential asymptotic distribution. In Theorem 2

we assume, among other conditions, that F(.) has a support that is unbounded

above and a tail that decreases to 0 like a power of x"1 and obtain a Weibull

asymptotic distribution. By inverting these distributions to obtain the

approximate distribution of the lifelength L we are led to the survival

functions S,(.) and S2 (-) of (1.1) and (1.2).

Theorem 1. Let the mean U and variance o2 of F(-) be finite. Further, for

some q in (0,1), let F(-) satisfy

(2.2) 1 - F(z) - o(z (2 +q 2 ) (log z) (llq 2)12)/

I
and

(2.3) J u2dF(u) = o(l/log z)
z

as z - -. Let k = k(t) be an integer valued function satisfying

(2.4) k I tq2/ 2

for large t. Set

(2.5) at " oct/2 log k)h

and

P
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(2.6) kt - ut a (2t log k) - (l/ 2)ekt (log log k log 4w).

Then, for y -C as t -- a,

(2.7) P{S*t : kty Okt} exp{-exp(-y)1.

J

Proof: Since the Zij's have finite variance, the random variables Sit are

approximately normally distributed. The maximum of normally distributed

random variables has an asymptotic double exponential distribution. Condi-

tions (2.2)-(2.6) allow us to approximate moderate deviation probabilities

of Sit adequately and then to use standard extreme value theory to establish

(2.7), as shown below.

Theorem 1 of Amosova (1978) on moderate deviations states that under

conditions (2.2) and (2.3),

t
(2.8) P(Sit > Ut+xat ) x(- 0 w( )(lo(l))

uniformly for x in (0, q(log t)'j, as t o-, where 6(.) is the standard

normal distribution function.

Notice that under condition (2.4), for any y,

*kty *kt ' Ut * XktOti

where

(2.9) xkt a (2 log k)II* (2 log k)'1(y- (1/2)(log log k log 4w) < q(log t)]

for large t. Thus

kW{Sit > aty *Okt k(l-(xkt))(1 o(l)) - e* Y

as t 4 a from (2.8) and a standard result on the maximum from the normal

distribution, for instance see Galambos (1978, Sec. 2.2.3). Hence

I
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log P{Skt %ty kt- k log P(S1, 'kty' * ti

-AP(it " ktY Bkt) +-eY

which implies (2.7). 0

In the next theorem we assume that the support of F(.) is unbounded

above and has a tail that goes to zero like a power of x 1. A distribution

F(-) can satisfy the conditions of both Theorem 1 and Theorem 2. Por such

P(.), one can obtain two different asymptotic distributions, because k = k(t)

may tend to - at different rates.

Theorem 2. Let F(.) have a finite mean M and satisfy

(2.10) 1 - FCx) = x%(x)

where h(-) is a slowly varying function and a > 1. Let

(2.11) y = infix: x'% (x) !5l/t)

and

(2.12) = I t.

Let km k(t) .- so that

(2.13) t"/k a 0(1)

at ti . Then, for x > 0,

(2.14) P{St S YktX +t) - exp(-x a)

as t *-.
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Proof: Condition (2.10) implies that the support of F(.) is unbounded above.

The fact that a > I implies that F(-) has a finite mean. There are two more a

uses of Condition (2.10) in the proof. The asymptotic distribution of a

maxima from F(.) will be exp(-x-a) (see for instance Galambos (1978, Theorem

2.4.3)); in fact, for x > 0, S

(2.15) log Ft(Ytx) a t log F(ytx) 6 -t(1-F(Ytx)) - -x-a

as t * -.

The second use of (2.10) comes in approximating large deviation proba-

bilities of Sit' Let q A . Theorem 1 of S. V. Nagaev (1982) states that

under Condition (2.10)

(2.16) P(S 'xl = ti1-F(1)) ()o(1))

as t 4 1, uniformly for x > qt. From the definition of yt in (2.11) and from

(2.1S) it can be seen that

(2.17) Yt as t -- and Yt = tl/s(t)

where s(t) is slowly varying. Thus

(2.18) Tkt ' kl/ayt "

Condition (2.13) relating k to t can be rewritten as k1/0 z pt for some

p > 0. Hence, for any x : 0 and q > 0,

I

oktX + 6t  kl/ytx t • PtYtx * ut • qt

for large t since yt " From (2.16) and (2.15), it follows that, for

x > 0, log P{qt S Yktx * 6t ) k log P{Slt 5 Yktx+ 6t} ^ -kP{Slt > YktX+6 t}

-kt(1-F(yktx)) 4 -x-a as t . -. This establishes (2.14). 0

S
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We will now show how the survival functions SI(.) and S2 (.) of (1.1)

and (1.2) arise naturally from Theorems 1 and 2. From the definition of L

in (2.1),

(2.19) P(L t} a P(St < d).

Under the conditions of Theorem 1, this is approximated by

exp(-exp( (d/a) ((2 log k)/t) - (M/a) (2t log k) i g(k)))

where

g(k) a 2 log k - (l/2)(log log k+ log 4w).

Since log k : (1/2)q 2log t, we can, after ignoring terms involving log t,

approximate the survival function by

exp(-exp (a + Oth - ' ).

The parameters a, 0, y satisfy -- - a < w, 0 > 0 and y 0 0, since in practice

one would assume that E(Z11 ) > 0 and d > 0. This is the survival function

S1 (.). Loosely speaking, the assumptions required for this are that the damage

distribution P possess moments of order 2 . q2 and that k tend to - like t q /2

or slower.

Under the conditions of Theorem 2, by specializing condition (2.13) to

read

k a pta

for some finite p, the survival function in (2.19) can be approximated by

d 8~

-01 a Ill I I II l . .....-
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where s(t) is a slowly varying function of t. As before we ignore the slowly

varying function and approximate the survival function by

exp(-Ot (l/t - y)')

for 0 - t < I/y and where B > 0, y > 0 and a > 1. This leads to the survival

function j2(- ) . Loosely speaking the assumptions required for this are that

the tail of the damage distribution be slowly varying of order a : 1 and

that k tend to - like te or faster.

Me will now give a counterexample to Theorem 1 to show that when condi-

tion (2.4) relating k to t is violated the asymptotic distributi f Sh

need not be the double exponential or even one of the other two treme value

distributions. Let ZI1 , Z1 2 , ... be independent and identical: 1'-tributed

with P(Z11 NO) a P(ZII 1) - 1/2. Let k a [2 tlog 2], where [.] As the largest

integer function. Then conditions (2.2) and (2.3) are fulfilled but not con-

dition (2.4). Note that St is integer valued and satisfies 0 S S t.

Further,

P{S*t :t-1) = (1 -/ 2t)k -* 1/2

and

P(S~t~st-2} a (I- (t~l)/2 t) k -w 0,

as t . -. Thus the limiting distribution of Skt- t exists and takes on

values -1 and 0 with probabilities 1/2 and 1/2.

In the above, by using Theorem 2, we have given a model for the survival

function S2 (.) only when a > I. However, it is clear from the form of S

that it is a survival function for a • -1. When we fit this distribution

in Section 3 we will allow the range of a to be (-1,-).
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By computing derivatives it is easy to see that S2 is IFR for a > 0,

exponential for a a 0 and DFR for -1 < a < 0. Similarly, it can be shown

that S1 (-) is IFR when Oy 
> (9+6/ /16 = 1.212. If Oy < (9+6/f)/16, then

the failure rate of $1(-) initially increases, then decreases and finally

becomes an increasing function.

3. Fitting S1(-) and S2(-) to data.

Many authors have proposed probability models to explain observed cancer

incidence rates. Creasy (1981) ascribes the most popular model to Armitage

and Doll (1961) in which a multistage theory of cancer development was pro-

posed. This leads to the Weibull survival function S4(). Later, Doll (1971)

extended this model to allow for an initial dormant period, which lead to the

shifted Weibull survival fimction S3(.). The cumulative damage threshold

crossing model proposed in this paper suggests two new survival functions,

sl(. and S2(.).

Doll (1971) gives data on incidence rates (x 100,000) in age groups of

0-4, 5-9, ... , 70-74 years, for several types of cancer in England and Wales

from 1961 to 1963. Denoting the failure rate of S.C) by r.(), we estimated

the parameters of Sj(-) by minimizing

16 2
(3.1) (r(t irl i (t i )

where t i is the midpoint of the i t h age group and r(t i ) is the corresponding

observed incidence rate. The Nelder-Mead algorithm was used for this mini-

mi2atioa, as in L. S. Nelson (1973), which included the constraints on the

parameters. The residual sum of squares, namely the minimum value attained

by (3.1), will be denoted by R, j 1, ..., 4. This is to be compared with
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the corrected sum of squares, RO, given by

16
(3.2) RO a o (r(ti)-) 2

jul

where i is the average observed incidence rate.

The data were classified into seven types of cancer as indicated in

Table 1. The category 'other' represents cancer of the bone, testes, rectum

or prostate. Table I gives a summary of these results. For all cancer types

except leukemia, Model 1 provided the best fit.

W. Nelson (1972, 1975) examined data on time until failure to insulate

when charges of several thousand volts were applied to parallel plates

separated by an insulating fluid. The parameters of the survival function

S3j .) were estimated by minimizing the von-Mises statistic

(3.3) n
n (t (1-S til

i=l S 3 ~i S,(i)

where t1 , ... , % are the observed times of failures arranged in increasing

order, and Pn (ti) a r . The minium value of (3.3) will be denoted by

VP j - 1, ... , 4. The results are reported in Table 2. Once again, S1 (-)

seems to give the best fit.

The third set of data analyzed comes from Proschan (1963) on times to

failure of Boeing 720 aircraft air conditioning units. The following modified

von-Mises statistic was minimized in order to estimate the parameters of SI(-)

and S3(.):

n (t n(t i)-s i (ti)) 2 .
(3.4) 1.

i. n(ti)dnt)
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where again t 1 , ... I t n are the observed times of failure arranged in in-

creasing order, and n(ti) = 1-Gn(ti) w n . The minimum value of (3.4)
n JL n

will be denoted by W, j a 1, 3. The results are reported in Table 3 and

SI(-) gave the better fit.

The first data set on cancer appears to have an IFR distribution, while

the second and third data sets indicate DFR distributions. In fact, Proschan

(1963) rejects the hypothesis of constant failure rate in favor of a DFR

distribution for the pooled failure times of all of the air conditioners.

As fitted to the air conditioner data, SI(t), has a decreasing failure rate

on the observed range from t - 1l.S to t a 231.7. It is heartening to see

that S1 (.) fares well in all the cases considered.
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Table 1. Results of fitting S1(.),....S4(.) to cancer incidence data from Doll
(1971).

S . S 2 (-) S 3 (') S 4 (-)

pRI amter I R I parameter 1 R*3 parameter RZ* parameter
estizmates Ijestimates j estimates estimates

Leukemia (1862 males, R5 * -1.61E-7)

5.218-9 6.38E-9 I4.66E-9 6.39E-9
(L-1.S2E~l 4.14 j2.9S8-3 14.69E-3

1.1O4 l.OlE-12 -l.64E~l ______ 6
1.104 1.00E-12 I1.642811.6

Soah(9274 males, R,= 8.34E-6)

3.0- 4.05E- 7.76E-8 8.22E-8
CL 806-8 0 8. 4-.05~ 7. 6 .79E- 6j8.228-

6.0- 10E1 4.93 S0
y 8.1~ 7.57E-5 12.50

Skin (9012 males, R0 - 6.89E-6)

8.54E-91 1.0OE-8 9.48E-9 1.01E-8
a -6.89 4.09 6.32E-3 6.64E-3

78E17.61Es.12 5.83 5.12
y29E 1 9.148-S j____-1.078.1 -

Lung (26676 males, Rft- 4.88E-S)

4.60E-6j S.85E-6 5.76E-6i S.858-6

65.l 2.7S 7.13E-3 7.04E-3

Other (10565 males, R0 - 2.258-5)

2.41E-8 2.97E-8 12.86E-81 2.93E-8

B3.578-2 Ii9.30E-17 7.S2 77
y 1.35E+2 1.04E-4 I2S

All Male (57389 males, ft0 - 2.89E-4)

2.34E-6 4.41E-6 II4.23E-6 4.39E-6
7.8 7 2.5631 4.61E- 91476

8.36E._J____ 8.94E-5 2.50 --

Breast (21017 females, R0 - 7.76E-6)

1.898-71 3.96E-7 I2.24E-7 3.96E-7
a .31.83 4.358-3 4.66E-3

0 .9E-10 2.47E-7 2.16 2.83j_______ 5S.79E-9 j____ 1.758 _____ --

'ft0 is the corrected sum of square3, (3.2), and Ri9 , 1,....4 are the
minimized residual sum of squares, (3.1).
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Table 2. Results of fitting S1(-),...,S 4(.) to data on failure times of insulators

from W. Nelson (1972, 1975).

s 1(.) s 2(-) s 3(.) s 40-
parameter V2 parameter 3 Parameter 4 Parameter

estimates estimates I I estimates estimates

32KV (n a1S)
O0.107 ;0.238 0. 191 0. 20S
0 -0.523 -0.513 0.0S1 0.047

B 0.140 0.235 0.424 0.464

T 0.923 1.469E-3 0.218 --

34 KV (n - 19)

0.341 0 O.296 0.295 0.303
a -0.317 -0.283 0.095 0.094

0 0.231 0.190 0.675 0.692

y 1.s12 6.0S70-32 --

36 Kv (n - 15)

0.200 0.315 0.249 0.328
1.200 -0.058 0.335 0.295

y2.640 3.738E-2 0.256 --

*Vj j 1,...,4 are the minimum values of the von-Mises statistic, (3.3).

Table 3. Results of fitting S1 (-) and S3(.) to 213 failures of Boeing air

conditioners from Proschan (1963).

st2(-) s (')

W, Parameter W3* Parameter
estimates estimates

0.3055 0.532 _
0.2945 0.1170
0.0728 0.8978
8.7581 1.0000

*VI and W3 are the minimim values of the modified von-ises statistic, (3.4). P



- 15 -

REFERENCES

1. Abdel-Hameed, M. and Proschan, F. (1973), "Non-stationary Shock odls,"
Stochastic Processes and their Applications, 1, 383-404.

2. Abdel-Hameed, N. and Proschan, F. (197S), '"Shock Models with Underlying
Birth Processes," Journal of Applied Probability, 12, 18-28.

3. Amosova, N.N. (1979), "On Moderate Deviation Probabilities for Sums of
Independent Random Variables," Theory of Probability and Its Appli-
cations, 24, 856-863.

4. Armitage, P. and Doll, R. (1961), "Stochastic Models for Carcinogenesis,"
Proceedings of the Fourth Berkeley Symposium on Mathematical Sta-
tistics and Probability, 4, 19-38.

5. Ashar, K.G. (1960), "Probabilistic Models of System Operation with a
Varying Degree of Spares and Service Facilities," Operations Research,
8, 707-718.

6. Birnbaum, Z.W., Esary, J.D. and Saunders, S.C. (1961), "lulticomponent
Systems and Structures and their Reliability," Technometrics, 3,
55-77.

7. Creasy, W.A. (1981), Cancer: An Introduction, University Press, New York.

8. Davis, D.J. (1952), "An Analysis of Some Failure Data," Journal of the
American Statistical Association, 47, 113-ISO.

9. Doll, R. (1971), '"he Age Distribution of Cancer: Implications for
Models of Carcinogenesis," Journal of the Royal Statistical Society,
Series A, 134, 133-166.

10. Esary, J.D., Marshall, A.W. and Proschan, F. (1973), "Shock Models and
Year Processes," Annals of Probability, 1, 627-649.

11. Flehinger, B.J. (1962), "A General Model for the Reliability Analysis
of Systems Under Various Preventitive Maintenance Policies," Annals
of Mathematical Statistics, 33, 137-156.

12. Galombos, J. (1978), The Asymptotic Theory of Extreme Order Statistics,
John Wiley and Sons, New York.

13. Gnedenko, B.V. (1943), "Sur la Distribution Limite du Terme Maximum d'une
Sdrie Aldatoire," Annals of Mathematics, 44, 423-453.

14. Harris, R. (1970), "An Application of Extreme Value Theory to Reliability
Theory," Annals of Mathematical Statistics, 41, 14S6-146S.



-16

IS. Laurent, A.G. (1958), "A Model for Failure Data and Its Applications,"
Annals of Mathematical Statistics, 29, 1288.

16. Nagaev, S.V. (1981), "On the Asymptotic Behavior of One-Sided Large
Deviation Probabilities," Theory of Probability and Its Applications,
26, 362-366.

17. Nelson, L.S. (1973), "A Sequential Simplex Procedure for Non-Linear Least
Squares Estimation and Other Function Minimization Problems," Annual
Technical Conference Transactions of the American Society for .ifTtfy
Control, 1973, 107-117.

18. Nelson, W.B. (1972), "Graphical Analysis of Accelerated Life Test Data
With Inverse Power Law Model," IEEE Transactions on Reliability,
R-21, 2-11; correction, R-21, 195.

19. Nelson, W.B. (1975), "Analysis of Accelerated Life Test Data--Least
Squares Methods for the Inverse Power Law Model," IEEE Transactions
on Reliability, R-24, 103-107.

20. Proschan, F. (1963), "Theoretical Explanation of Observed Decreasing
Failure Rate," Technometrics, 5, 375-383.

21. Schafer, R.E. and Finkelstein, J.M. (1962), "Dependability Models for
a System of N Parallel Components," Annals of Mathematical Statistics,
33, 1209.

22. Sen. P.K., Bhattacharyya, B.B. and Suh, M.W. (1973), "Limiting Behavior
of the Extremum of Certain Sample Functions," Annals of Statistics,
1, 297-311.

23. Weiss, G.H. (1961), "The Reliability of Components Exhibiting Cumulative
Damage Effects," Technometrics, 3., 413-422.



UNCLASSIFIED
'%5EurIT UL SIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1. REPORT rKPIIBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NP11ER m
FSU Report No. M680 N/A N/A
USARO Report D-67 I N/A_ _/A

4. TITLE (and subtitle) 5. TYPE (F REPORT & PERIOn COVERED

Cumulative Damage Threshold Crossing Models Technical Report
r5. PERFORiING ORG. REPORT NLPIRER

FSU Statistics Report No. M680
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

J. Sethuraman and Thomas R. Young USARO No. DAAG-29-82-K-0168

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAd ELEMENT, PROJECT, TASK AR
Department of Statistics A 1JORK UNIT NUMBERS
Florida State University
Tallahassee FL 32306

11. CONTROLLING OFFICE NArIE AND ADDRESS 12. REPORT DATE
U. S. Army Research Office May, 1984
Post Office Box 12211 13. NUMER OF PAGES
Research Triangle Park, NC 27709 16

14. MONITORING AGENCY NAHE . ADDRESS (if 1b. SECURITY CLASS. (of this report)
different from Controlling Office) Unclassified

15a. OECLASSIFICATION/DOWNGRADINGj SCHEnULE

16. DISTRIBUTION STATEMENT (of this report)

Approved for public release; distribution unlimited.

17. DISTRIBIITION STATEMENT (of the ahstract entered in Block 20, If different from repo

N/A

18. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the
authors and should not be construed as an official Department of the Army position,
policy, or decision. unless so designated by other documentation.

19. KEY WORDS

Modelling survival functions, extreme value distributions.

?O. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This paper describes a model for survival functions called the cumulative
damage threshold crossing model. Under this model, an item, consisting of a large
number of components which suffer damage at regular moments of time, fails as soon
as the maximum cumulative damage to some component crosses a certain threshold.
Under various conditions on the damage distribution, two plausible new survival
distributions

S1 (t) = exp{-exp(a+0th-yt- )}, t > 0, < a < -, 0 > 0 and y > 0,

and

S2(t) exp{-Bt(l/t-y)-a}, 0 < t < 1/y, a > -1. 8 > 0 and y > 0

arise. The survival function S (-) is shown to fit several data sets in the area
of cancer studies, failure timel of insulating fluids and failure times of air
conditioning units.



.4IQ

4 t

L I i

:f4f

L0

ow

* A %

* Iv...4


